Home My Account  |  Cart Contents  |  Checkout   
   
Search
Free Catalog!
Register to receive Free Catalog
Featured more
QuickLog, QuickCross/Fence, QuickGIS, QuickSoil
QuickLog, QuickCross/Fence, QuickGIS, QuickSoil
Information
Order & Payment
Shipping & Returns
Privacy Statement
Price Guarantee
SSG Home
Contact Us
VS2DT

Detailed Description

VS2DT

VS2DT





Introduction

is a USGS program for flow and solute transport in variably saturated, single-phase flow in porous media. A finite-difference approximation is used in VS2DT to solve the advection-dispersion equation. Simulated regions include one-dimensional columns, two-dimensional vertical cross sections, and axially symmetric, three-dimensional cylinders. VS2DT Program options include backward or centered approximations for both space and time derivatives, first-order decay, equilibrium adsorption (Freundlich or Langmuir) isotherms, and ion exchange. Nonlinear storage terms are linearized by an implicit Newton-Raphson method. Relative hydraulic conductivity is evaluated in VS2DT at cell boundaries using full upstream weighting, arithmetic mean or geometric mean. Saturated hydraulic conductivities are evaluated in VS2DT at cell boundaries using distance-weighted harmonic means.

VS2DT has been modified to present pertinent data during execution. Five additional utility modules are included with VS2DT. GREEN is the Green-Ampt analytical solution for infiltration. PRESS1D and CONCEN1D produce one-dimensional pressure and concentration profiles, respectively. MASSBAL produces mass balance rate component profiles. OBSERV produces volumetric moisture content, saturation and concentration time history data sets at each observation point.

VS2DT includes the source and executable codes, the five utility modules, and technical support.

VS2DT uses a finite-difference approximation to the advection-dispersion equation.

Simulated regions can be:

  • One-dimensional columns,
  • Two-dimensional vertical cross sections, or
  • Axially-symmetric, three-dimensional cylinders.

Program options include:
  • Backward or centered approximations for both space and time derivatives,
  • First-order decay,
  • Equilibrium adsorption as described by Freundlich or Langmuir isotherms, and
  • Ion exchange.

VS2DT is a useful tool in studies of water quality, ground-water contamination, waste disposal, or ground-water recharge. The program is user-oriented and easy to use.

VS2DT uses a finite-difference approximation to the advection-dispersion equation as well as the nonlinear water-flow equation (based on total hydraulic head).

VS2DT can simulate problems in one, two (vertical cross section), or three dimensions (axially symmetric). The porous media may be heterogeneous and anisotropic, but principal directions must coincide with the coordinate axes. Nonlinear storage terms are linearized by an implicit Newton-Raphson method. Relative hydraulic conductivity is evaluated at cell boundaries using full upstream weighting, arithmetic mean or geometric mean. Saturated hydraulic conductivities are evaluated at cell boundaries using distance-weighted harmonic means. Moisture-characteristic curves may be represented by the Brooks-Corey, Haverkamp and van Genuchten models or interpolated from tabular data.

Boundary conditions for flow in VS2DT can take the form of fixed pressure heads, infiltration with ponding, evaporation from the soil surface, plant transpiration, or seepage faces.

Boundary conditions for solute transport in VS2DT include fixed solute concentration and fixed mass flux. Solute source/sink terms include first-order decay, equilibrium partitioning to the solid phase (Langmuir or Freundlich isotherms), and ion exchange.

The design of VS2DT is modular and may be easily modified in order to apply the model to a particular field, laboratory, or hypothetical problems.



VS2DT Solute Transport

The derivation of the equation in VS2DT is based on the conservation of mass and Fick's Law.

Three mechanisms affect the movement of solutes in the VS2DT model under variably saturated conditions:
  • Advective transport in which solutes are moving with the flowing water. The second term on the equation represents the divergence of the advective flux. This accounts for changes in solute concentrations due to water moving and carrying solute with it.
     
  • Hydrodynamic dispersion in which molecular diffusion and variability of fluid velocity cause a spreading of solutes about the average direction of water flow. Hydrodynamic dispersion refers to a spreading process whereby molecules of a solute gradually move in directions different from that of the average ground-water flow. Two mechanisms comprise hydrodynamic dispersion. The first is called mechanical dispersion and is caused by variations in the velocity field at the microscopic level. These variations are related to the tortuous nature of flow paths through porous media and the differences in velocity that occur across a single pore. Flow paths are not straight but must follow the pores. Therefore molecules of a solute will also be carried through these paths. The second mechanism is molecular diffusion which results from variations in solute concentrations. Molecules of solute will move from areas of high concentration to areas of low concentrations.
     
  • Sources and sinks include fluid sources, where a water of a specified chemical concentration is introduced to water of a different concentration, and chemical reactions such as radioactive decay or adsorption to the solid phase. Source/sink terms can be divided into two general categories: solute mass introduced to or removed from the domain by fluid sources and sinks, and mass introduced or removed by chemical reactions occurring within the water or between the water and the solid phase.

VS2DT has been modified to present pertinent data (simulation time, iteration number, elapsed time) on the screen during execution.

Five additional utility modules have been developed and are included with the VS2DT package: GREEN, MASSBAL, OBSERV, PRESS1D and CONCEN1D.
  • GREEN is the Green-Ampt analytical solution for infiltration. The other four modules read VS2DT output files and produce data files which may be plotted with TECGRAF (not included). XYZ files may also be produced.
  • MASSBAL produces mass balance rate component profiles.
  • PRESS1D and CONCEN1D produce one-dimensional pressure and concentration profiles, respectively.
  • OBSERV produces volumetric moisture content, saturation and concentration time-history data sets at each observation point specified in the VS2DT simulation.

A graphical user interface for VS2DT is now available in the WHI UnSat Suite. The VS2DT model is also included.



Copyright © 2014 Scientific Software Group